Development of an Iridium‐Based Catalyst for High‐Pressure Evolution of Hydrogen from Formic Acid

نویسندگان

  • Masayuki Iguchi
  • Yuichiro Himeda
  • Yuichi Manaka
  • Hajime Kawanami
چکیده

A highly efficient and recyclable Ir catalyst bearing a 4,7-dihydroxy-1,10-phenanthroline ligand was developed for the evolution of high-pressure H2 gas (>100 MPa), and a large amount of atmospheric pressure H2 gas (>120 L), over a long term (3.5 months). The reaction proceeds through the dehydrogenation of highly concentrated aqueous formic acid (FA, 40 vol %, 10 mol L-1 ) at 80 °C using 1 μmol of catalyst, and a turnover number (TON) of 5 000 000 was calculated. The Ir catalyst precipitated after the reaction owing to its pH-dependent solubility in water, and 94 mol % was recovered by filtration. Thus, it can be treated and recycled like a heterogeneous catalyst. The catalyst was successfully recycled over 10 times for highpressure FA dehydrogenation at 22 MPa without any treatment or purification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures.

Green plants convert CO(2) to sugar for energy storage via photosynthesis. We report a novel catalyst that uses CO(2) and hydrogen to store energy in formic acid. Using a homogeneous iridium catalyst with a proton-responsive ligand, we show the first reversible and recyclable hydrogen storage system that operates under mild conditions using CO(2), formate and formic acid. This system is energy-...

متن کامل

A prolific catalyst for dehydrogenation of neat formic acid

Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. ...

متن کامل

Base free transfer hydrogenation using a covalent triazine framework based catalyst

Transfer hydrogenation (TH) reaction – the addition of hydrogen to an unsaturated group of an organic molecule from a source other than H2 – has been gaining a lot of attention as it is an appealing alternative to direct hydrogenation. The reasoning behind it is the elimination of pressurised hydrogen and high pressure equipment use. Besides, a conventional hydrogenation catalyst is rarely sele...

متن کامل

Oxidative Desulfurization of Sour Gas Condensate and Optimization of Parameters with Response Surface Methodology

Reducing environmental pollution via elimination of sulfur compounds from gas condensate was the aim of this research. Whereby oxidative desulfurization from gas condensate with 3200 ppm initial sulfur was accomplished by hydrogen peroxide (30%wt) as oxidant and formic acid as catalyst. The sulfones after generation in the oxidation step were extracted through a method of liquid-liquid extracti...

متن کامل

Highly efficient hydrogenation of carbon dioxide to formate catalyzed by iridium(iii) complexes of imine–diphosphine ligands† †Electronic supplementary information (ESI) available: Experimental procedures; spectral data for all new compounds. See DOI: 10.1039/c5sc00248f Click here for additional data file. Click here for additional data file.

Carbon dioxide (CO2), an economical, safe, environmentally friendly, and renewable carbon source, is an ideal one-carbon building block for organic chemicals, including carbohydrates and fuels. However, its thermodynamic and kinetic stability presents a fundamental obstacle to the use of CO2 in both academia and industry. High-energy reagents, harsh reaction conditions, and special activation m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2016